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Abstract-The steady propagation of the planar laminar premixed flame in the doubly-infinite domain, 
with chain branching-termination reactions and weak volumetric heat loss, is studied using activation 
energy asymptotics. Two flame propagation regimes are identified and analyzed: a fast recombination 
regime in which the recombination reaction occurs in a steady-state manner with the high-activation- 
energy branching reaction in an overall reaction region which is much thinner than that of diffusion, and 
an intermediate recombination regime in which the recombination region is much thicker than the branching 
region but much thinner than the diffusion region. The analysis yields the characteristic dual solution, 
extinction turning point flame response, and shows that the flame propagation speed is reduced to e- I.” 

of the adiabatic value for both reaction mechanisms. The generality of this limit flame speed is noted. 

1. INTRODUCTION 

A CLASSICAL model problem for the study of premixed 
flame extinction is that of Spalding [ 11, who analyzed 
the one-dimensional freely-propagating flame with 
temperature sensitive one-step overall reaction and 

radiative heat loss. By letting these processes assume 
power-law temperature variations, with the exponents 
being 11 and 4 for the reaction rate and heat loss rate 
such that the former is more temperature sensitive 
than the latter, the analysis yields an extinction turn- 
ing point, at which the normalized flame speed 
_ 
Sf,ex = s,,,/$ is 0.504, where sr is the flame speed and 
sf” the adiabatic, laminar flame speed, and the sub- 
script ‘ex’ designates the extinction state. A more rig- 
orous analysis [2] of the Spalding problem by using 
activation energy asymptotics and for weak, O(E) con- 
ductive heat loss subsequently yielded & = e- ‘/2, 
which is about 0.607, and a suitably-scaled heat loss 
rate L = e- ’ at the state of extinction, where E is the 
reciprocal of the nondimensional activation energy to 
be defined later. The same result was shown to also 
hold [3] for a general O(E) volumetric heat loss func- 
tion. 

Recently, Sibulkin and co-workers [46] reported 
numerical solutions of transient planar and out- 
wardly-propagating lean methane/air flame, allowing 
for radiative heat loss but with constant transport 
properties and one-step overall reaction. It was shown 
that at the limit of propagation ?r again assumed a 
value around 0.6. Lakshmisha et al. [7] and Law 

and Egolfopoulos [8] extended these calculations to 
include variable properties and detailed chemistry, 
and further demonstrated the near-constancy of this 
value. Compared to previous analytical studies, these 
computational results are significant because they 
indicate the possibility that at the extinction limit the 
flame speed is always reduced to about 60% of its 
adiabatic value, being very insensitive both to the 
reaction mechanism, whether it is one-step or detailed, 
and to the loss mechanism, whether it is conductive 
or radiative, as long as it is O(E) and volumetric in 
nature. 

The objective of the present study is to provide a 
fairly general proof of the above possibility based 
on activation energy asymptotics. Recognizing that 
previous analytical studies mostly involve a one-step 
large activation energy reaction, which obviously can- 
not capture the inherently-important chain branching 
and termination nature of realistic reaction schemes, 
we shall employ the Zel’dovich-Litian two-step mech- 
anism [9, lo], which consists of a branching reaction 
and a competing recombination (termination) reac- 
tion. This is believed to be the simplest representation 
of the chain nature of realistic reaction mechanisms. 
A general, O(E) volumetric heat loss function will be 
used in the analysis. 

The system to be analyzed is formulated in the next 
section. It will be shown that there are two situations 
of interest, which respectively involve fast and inter- 
mediate recombination reaction rates. These two situ- 
ations are separately analyzed in Sections 3 and 4. 
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NOMENCLATURE 

(I, h, ( integration constants ; Euler’s constant 
B pre-exponential factor ?J small parameter representing the 

CP specific heat at constant pressure relative thickness of the 
D mass diffusion coefficient recombination region to the preheat 

Da ~rnk~hlcr number region 
E activation energy 1: small parameter of expansion, defined 

.f mass flux through the flame or the flame aS 7$/E 

propagation rate 5 compressed coordinate defined as 

.f‘” flame propagation rate in the adiabatic 8% 

limit 0 temperature perturbation in the 

F rate controlling reactant (fuel) recombination region 

N temperature-dependent volumetric 0 temperature perturbation in the 
heat Ioss function branching region 

H,. Heaviside function defined after A burning rate eigenvalue 

equation (A24) j” thermal conductivity 

I, heat loss coefficient 5 stretched coordinate defined as Z/r, 

LC conductive heat loss coefficient density 

L, radiative heat loss coefficient t: fuel concentration pertur~dtion in the 

Le Lewis number branching region 

M third body of collision needed for y radical concentration in the 

recombination recombination region 

P combustion product VQ radical concentration in the branching 

P pressure region 

%: heat of combustion per unit mass of fuel 0) reaction rate function. 

R radical species 

R” universal gas constant Subscripts 

s, flame speed ex the extinction state 

sp adiabatic, laminar flame speed F fuel 

T temperature M third body of collision needed for 

T ad adiabatic flame temperature recombination 

Tf leading order flame temperature R radical species 

W molecular weight - ^1, quantities at the upstream ambiance. 

x spatial coordinate attached to the flame 

front Superscripts 

Y mass fraction. -. + quantities in the upstream and 
downstream of the branching region 

Greek symbols n pressure exponent 

I- parameter defined after equation (A20) -., dimensionless quantities. 

2. FORMULATION form combustion products and generate heat. For 

The two-step branching-recombination reaction 
mechanism adopted in this study is given by 

F+R-+2R (1) 

R+R+M-+ P+M (2) 

where F, R, P and M respectively denote the rate 
controlling reactant (say the fuel), a radical species, 
the combustion product, and a third body of collision 
needed for recombination. In this mechanism, reac- 
tion (1) represents the two-body, high activation 
energy, branching reaction that has a small heat of 
combustion and produces more radicals than it con- 
sumes when reacted with the fuel. Equation (2) is the 
three-body, low activation energy, highly exothermic, 
termination reaction that combines the radicals to 

simplicity we shall therefore assume that the bran- 
ching reaction is thermally neutral while the ter- 
mination reaction has zero activation energy. If we 
further assume that the rates of these two reaction 
steps, CO,, vary with the first order of each reactant. 
then they can be respectively expressed for reactions 
(1) and (2) as 

where T is the temperature, Yi and W, the mass frac- 
tion and molecular weight of species i. p the pressure. 
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B, and nj the pre-exponential factor and pressure 
exponent of reaction j, E the activation energy of the 
branching reaction, and R” the universal gas constant. 
The mass fraction of the third body, Y,, can be con- 
sidered to be a constant. 

Da 
2 

= ~B,AP~* YF,- m YM 

(f”)*C,WFWM ’ 

The physical problem under study is the steady 
propagation of the one-dimensional premixed flame 
in the doubly-infinite domain with an arbitrary tem- 
perature-dependent volumetric heat loss function 
H(T). The governing equations and boundary con- 
ditions are given by 

where Le, is the Lewis number of species i, Da, the 
Damkohler number of the jth reaction, f”(&) the 
flame propagation rate in the adiabatic limit, and 
F,d = 1+ F_, the adiabatic flame temperature, the 
governing equations are nondimensionalized to 

=qFWFmZ-&H(T), (5) 7%-&s= -Da,~F’,~exp(-.@/~), (10) 

(6) 

= W,(w, -2~14, (7) 

dT dY, dY, 
x-co: --+o, ---+o, ----+o, 

dx dx dx 

where x is the spatial coordinate attached to the flame 
front, f the mass flux through the flame, p the density, 
c, the specific heat at constant pressure, qF the heat of 
combustion per unit mass of fuel consumed, i the 
thermal conductivity, and D, the mass diffusion 
coefficient of species i. The quantities 1, cP and pDi 
are assumed to be constants. It is appropriate to con- 
centrate on only O(E) heat loss because it represents 
the limiting situations of the extinction of weakly- 
burning flames. Clearly a flame will extinguish with 
O(1) heat loss if it extinguishes with O(E) heat loss. 

It is worth noting that equation (8b) implies 
T+T,, Y,-*O,and Y,-+Oatx-roo,forwhichT, 
is the adiabatic flame temperature if the system is 
adiabatic and T, = T_, in the presence of heat loss. 
Thus both of these conditions are applicable and yield 
the same result. Equations (8b) are adopted because 
they are more general. For the case of moderate (i.e. 
O(1)) heat loss in the downstream of the branching 
region, equations (8b) are still valid except Y, # 0 at 
x-+00. 

Introducing the nondimensional quantities 

F= 
2T _ Y, 

9FYF,A&p’ yF = Y,,_,’ 

EC 
2E/R” 

ff= 
2H/z 

qF yF,-col~p’ (f)*CpqFYF,--m 

Le. = 3s 
’ PQ’ 

E = Cd -3 
E 

Wb) 

This system will be solved by activation energy asymp- 
totics. 

Depending on the rate of the recombination reac- 
tion relative to that of the branching reaction, three 
flame propagation regimes can bc identified. In a fast 
recombination regime both reaction rates are of the 
same order so that the reactions occur in the same 
thin reaction region. In an intermediate re- 
combination regime the recombination rate is much 
slower than the branching rate but is much faster than 
the diffusion rate. Consequently the recombination 
region is much thicker than the branching region but 
much thinner than the preheat region. Finally, in a 
slow recombination regime the recombination rate is 
either comparable to or slower than the diffusion rate 
such that the thickness of the recombination region is 
either of the same order of or larger than that of the 
preheat region. 

In the next two sections, the fast and intermediate 
recombination regimes will be analyzed sequentially. 
The slow recombination regime will not be analyzed 
because it represents very weak chemical systems 
which are not likely to be of interest to combustion. 

3. FAST RECOMBINATION REGIME 

In this regime, the rates of the recombination and 
branching reactions are of the same order so that both 
reactions occur in the same thin reaction region. Thus 
the radicals are consumed to produce heat almost 
immediately after they are generated. This implies that 
the concentration of the radicals is basically inde- 
pendent of time and is very small, and hence the steady 
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state approximation. d Y,/dt + 0, is applicable. Figure 
I shows the species and temperature profiles of such 
a flame. 

With the application of the steady state approxi- 
mation, setting equation (11) to zero readily yields 

The vanishing of the LHS of equation (I I) is justified 

by the small radical concentration. Substituting P, 
into the reaction rate terms of equations (9) and (lo), 
the problem is then reduced to a one-step reaction 
with a rate 

which is second order with respect to p,.. and has an 
effective DamkGhler number &:!Da, and an effective 
activation energy 2,!?. Compared with previous 
asymptotic studies (see, for example, refs. [2,3]) which 

adopted a one-step first-order overall reaction, the 
difference in the mathematical aspect of the two prob- 
lems is only the reaction order. It is therefore of intcr- 
est to study that, apart from the obvious difference in 
the physical interpretation of these two problems, 
in terms of the chain branching and termination 
reactions through modifications of the effective 

Damkahler number and activation energy, what 
additional effect a simple change in the reaction order 
can produce. Due to the similar nature of the asymp- 
totic derivation with previous studies, only the key 

steps will be shown below. 
In the outer, chemically inert regions, there is no 

branching reaction in the upstream region because the 
flow temperature is low and the reaction has a high 
activation energy. In the downstream region branch- 
ing is terminated because of complete fuel consump- 
tion. The recombination reaction does not exist in the 
outer regions due to complete radical consumption. 

Thus the outer solutions for 9, are 

9; = I - (h,, +t:h, +. ,) exp (Le,,ff), (14) 

9: = 0, (IS) 

O(e) Branching and 

O(l) Preheat Region 

)( 1 / 0(1/E) Burned 
Region 

I 
I I 

FE. I. Schematic of the flame wwture for the fast recom- 
bination regime. P, has been magnified for clarity. 

while -?‘ can be expanded as FJm = T$ +cF,’ $ 
This yields 

T‘,, = 7 , +a,, cxp ( f?). (Iha) 

fi( 7,) ) d.i. (16b) 

In the above the superscripts - and + respectively 
denote quantities in the upstream preheat region and 
downstream burned region, while N, and h, the intc- 
gration constants to be determined. Note that in the 
downstream region. a compressed coordinate t/ = ;:.\‘ 

is used because the temperature decrcascs gradually 
from the flame temperature to the ambient tcm- 
peraturc due to the heat loss. 

In the inner, chemically rcactivc region, the co- 

ordinate is stretched as < = .9e while 7 and P, are 
cxpandcd as 

T= 7,--A, -;:‘I), +-.... (18) 

P,. =Eq”,+i;Gb2+~.~. (19, 

Substituting equations (18) and (I 9) into equations 
(9), (10) and (13), and expanding. we obtain the inner 
equations 

d’tJZ 

d5’ 

where 

Matching the inner and outer solutions yields the 

relations 

11,) = Ti- 7 , . T=I: (‘1 = 0) = T,, h,, = 1. (24) 

and the matching conditions to solve equations (20) 

to (22). 

“0 

! 17( F,, ) d-7, (26a) 
I 
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W’b) 

-03) =o, 

where equations (27a, b) also imply 

(28b) 

g([-+ -co) = -Le,J (294 

d4, 
Yi$ -+m)=O. (29b) 

Equations (16b) and (17) have been applied in obtain- 
ing the second relation of equations (26a, b). 

Integrating equations (21) twice and (22) once sub- 
ject to the matching conditions in equations (25)-(28) 

yields 

where 

L” = 2 H(T,,) +3 [ - - /;/(f;)dZ]. (32) 

It can be readily demonstrated, by re-defining 
2 = J?? = x/[l/(fc,)], that L” is independent ofr 

Equation (30) shows that the leading order flame 
temperature is the adiabatic flame temperature, which 
is reasonable because the heat loss is assumed to be 

O(E). Substituting equation (31) into equation (20) 
and integrating the resulting equation once subject to 
the boundary conditions in equations (27a, b) and 

(29a, b), we obtain an expression which determines 
the flame propagation rate, 

/‘exp($) = %A. (33) 

In the adiabatic limit, i? = 0 and3 = 1. We then have 

(Le,A/2) = 1 for the laminar flame propagation rate 

f”. Equation (33) then becomes 

y2exp (+) = 1. (34) 

The quantities F’f and b, are not of interest and hence 
will not be solved. 

Equation (34), of course, is exactly the same as 
that of, say, Joulin and Clavin [2] who considered 
conductive heat loss and a first-order reaction. Repro- 

L 
FIG. 2. Normalized flame propagation rate fas a function 
of the heat loss parameter L for the fast and intermediate 

recombination regimes. 

ducing equation (34) in Fig. 2, it is seen that there 
exists a maximum value of L, $,, above which no 

solution exists. For L” < 2,, there are two solutions 
for each t, although it is well established that only 
the upper branch gives the stable solution. This critical 
state is then defined as that of extinction, being charac- 

terized by 

%, = e-’ and ,xX = em ‘I’. (35) 

4. INTERMEDIATE RECOMBINATION REGIME 

In this regime the rate of the recombination reaction 
is much slower than that of the branching reaction 
but much faster than the diffusive-convective trans- 
port rate. Consequently the recombination region is 
much thicker than the branching region but much 
thinner than the transport region. By defining a 
second small parameter 6 to describe the characteristic 
thickness of the recombination region, where E <c 
6 << 1, the flame structure then includes an O(E) 
branching region sandwiched by O(6) recombination 

regions, which in turn are embedded within an O(1) 
upstream preheat region and an 0(1/e) downstream 
burned region. Since the exothermic recombination 
reaction continues subsequent to completion of the 
branching reaction, temperature will also con- 
tinuously increase until heat loss becomes dominant. 
The species and temperature profiles are shown in 
Fig. 3. 

By separately analyzing the five regions and per- 
forming the requisite matching, which is presented in 
the Appendix, the flame speed response is now given 

by 

3 E ‘I3 exp P = 1. 
( > 

Comparing equations (36) and (34), we can see that 
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O(1) Preheat Region 

O(6) Recombination 

FIG. 3. Schematic of the flame structure for the intermediate 
recombination regime. 

their functional expressions are similar although the 
branching and recombination reactions occur at 
different length scales. Thus the behavior of ,r as a 
function of L” is qualitatively similar to that of the fast 

recombination regime, as shown in Fig. 2. The flame 
extinction limit is now described by 

xX = e- “l, Lc,, = (4/3)e-‘. (37) 

It is interesting to note that although the reaction 
kinetics adopted in this regime are different from those 

of Section 3, the flame still extinguishes at .f = e- I”, 
albeit at a different i,__. Combining this result with 
those obtained from the analysis by adopting a one- 
step overall reaction [2] and the numerical studies [4- 
81, it may be suggested that extinction is achieved 
when the inherent nonadiabaticity of the system 
reduces the flame propagation rate to about e I” or 

0.607 of its adiabatic value. The fact that a large heat 
loss is needed to extinguish the flame in the inter- 
mediate recombination regime as compared to that 
in the fast recombination regime is also reasonable 
because the overall reaction rate is less temperature 
sensitive for the slower recombination rate. 

5. CONCLUDING REMARKS 

In this study, we have analyzed the extinction limit 
of the planar premixed flame with O(E) volumetric 
heat loss by adopting a two-step, branching and ter- 
mination kinetics. Based on the relative rates of these 
two reactions, the fast and intermediate combination 
situations are studied. The results show that the flame 
always extinguishes when the flame propagation rate 
is reduced to eel/’ of its adiabatic value, which is 
consistent with previous analytical results with one- 
step reaction and numerical results with detailed 
chemistry. 

The above analysis is based on a general heat loss 
function H. Two loss mechanisms that are usually 
specified are conduction and radiation. For a linear 
heat loss function, H = L,(T- T ,x) where L, is the 
heat loss coefficient. We then have e = (4&)/ 
(f‘ cJ2. For radiative loss, H = LR(T4- T4 ,,) and 
we have 

+Ip, ,+W.+sT’, ). 

Finally, we note that the influence of the reactant 
concentration on flame extinction is primarily 
through the factor (f”)’ in the definition of A. Thus 
as the fuel concentration becomes either leaner or 

richer, the decrease in_ ,f” would lead to a cor- 
responding increase in H. It is therefore clear that the 
present result also predicts the existence of con- 

centration limits at the heat loss rate .&,, beyond 
which steady flame propagation is not possible. Such 
limits have been identified as the flammability limits 
[I. 4, 5. 7, 81. 
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APPENDIX: DERIVATION FOR THE 
INTERMEDIATE RECOMBINATION REGIME 

All the solutions are expanded with respect to the two 
small parameters E and 6. Thus in the outer, transport regions 
away from the recombination region, P& = 0, while 9: is 
given by equation (I 5) and 

P,~ = I-i[b,+O(6)]+~[b,+O(fi)] 

+O(E’)] exp(le,_jlf). (Al) 
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The solution of ?* can be obtained by first expanding it in 
the form 

F” = [T: +SF:: +O(S’)]+s[~; +0@)]+0@*), (A2) 

which is then substituted into equation (9) to yield equations 
(16a), (17), and 

R = ai exp (73, (A3) 

(A4) 

The compressed coordinate n = ~2 is again used in the 
burned region such that all the terms in P’ are functions of n, 

In the O(6) recombination region, the coordinate is stret- 
ched as [ = n/s. There is no branching reaction in this region 
because of its high activation energy. Thus the outer solution 
of rr is still applicable. Moreover, only O(6) variations are 
possible for F” and Pi so that their expansions are 

F+ = [Fr,,,-60$ -s*o: +0(P)] 

--E[@: +SO: +0(S2)]+0(sz), (AS) 

Pg = [Wf +PIJ’: +0(P)] 

+aw: +CW’d +o(s*)]+o(&*). (A6) 

Substituting equations (A5) and (A6) into equations (9) and 
(1 l), but with the branching reaction frozen, and expanding, 
we obtain for P,‘, 

1 d”4” 

Le,F 
= 2’-‘A,Y’fY’:, i= 1,2, (A7) 

+(i-l)Y’:Y;,], i= 1,2, (A8) 

where A, = 63&z, is the reduced Damkiihler number for the 
termination reaction. The local coupling functions are given 

by 

The volumetric heat loss is not important in the above equa- 
tions because the recombination regions are still very thin, 
of O(6). Each of the above equations needs to be solved 
separately in the upstream and downstream of the branching 
region. 

Matching the solutions in the recombination region with 
the outer diffusive-convective regions yield a, = Fr,O - f’_,, 
F;(n = 0) = Fr$ and the conditions to solve equations 

(A7)-(AlO), 

YF([-+ +co) =O, i= 1,2,3,4, (All) 

O:([-+co)= -FzT(q=O), i= 1,2, (A12) 

d@: dF’,+ 
- _ 

+ 
-+co)=-dtl(n=o)‘r, 

WG.0) (A13) 

@FCC-+ -03) = -aI--3(Ff,,,-F_,){, (A14) 

O,(i- -co) = -P,(B=O), (A15) 

_ s a fi(F’,)dn. (A16) 
-rn 

Equations (17) and (A4) have respectively been used in deriv- 
ing the second relation of equations (A13) and (A16). 

Solving equations (A7) and (A8) subject to the matching 
conditions in equation (All), we obtain 

Y: = 4/(I-[+cf)2, (A17) 

Iy: = 1-cf/(r-[+cf)3, (A18) 

dY: -= 
di 

W’O) 
where c,’ are the integration constants to be determined and 
I- = (2LeRh2/3)“2. 

Applying equations (A17)-(A20) to equations (A9) and 
(AlO), then solving the resulting equations subject to the 
matching conditions (A12)-(A16), we obtain 

@+’ 4 

Lea02 

-[f(~~,~-T,)I-a,lH"(-I)-IT:(q = WW), 6421) 

@,l =L- rc: 
LeR (ri+cfp 

-j;;(Z=O)H,(-n-P;(n=O)H,([), (A22) 

d’@: 

F 
=- 

- yi’;(? = O)+~~~d(l,)di]x.(-i), (A24) 

where H, is the Heaviside function with H&‘) = 1 for c > 0 
and 0 for c < 0. In the above only the solutions required for 
matching with those in the branching region are presented. 
Because (dY; /d& 3 0 and (dY: /d&, < 0, we must have 
c; c 0 and c: > 0. 

In the thin branching region, the coordinate is stretched 
as 5 = Z/E while Fr and ya are expanded as 

Fr = E(4, +...)+&*(~*+...)+0(&3), (A25) 

Fa = (6~,+62~,+.-.)+E(~*+...)+E2(~4+.’.)+O(&3). 

(A26) 

Because the activation energy for the branching reaction is 
high, variation of temperature can only be O(E). Thus F is 
expanded as 

(A27) 

Although the activation energy is large, it is not extremely 
high such that the branching reaction can occur in a tem- 
perature range smaller than its maximum value by an O(6) 
amount. Substituting equations (A25)-(A27) to equations 
(9)-(11) and expanding, we obtain the following equations 
that describe the branching region, 

Wi ~=0, i= 1,3, 

d’tl ‘-0 
dt* - ’ 

d%, 
dt;’ = AZ+:> 

(A281 

(A29) 

(A30) 
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(A31) 

(A32) 

where 

A, = c’6Du, exp (A35) 

is the reduced Damkiihler number for the branchmg reac- 
tion. 

Matching is performed first by expressing the outer solu- 
tions of Pp in terms of < = .V/E, expanding, and then equating 
the resulting expression with the solution in the branching 
region. This gives h,, = I and equations (27))(29). Next, the 
solutions of F’ and Pi in the recombination region are 
expressed in terms of 5 = (cia)i and expanded to yield 

and the matching conditions 

$,(ir + * X’) = 4/(<,; )2. 

$2(5 + * ?C) = l-cc: -8<)/(ci )). 

(A36) 

(A37) 

(A38) 

(A39) 

(A40) 

(A4t) 

(A42) 

r 
f’(?c,,,-T 7)<+,ffy(.T=O)+ 

J 
d(?,)dn Lf,(-c). 

_I I 
(A43) 

In analyzing the branching region, first equations (A28) 
for $, and (A32) are solved subject to equations (27), (A37) 
and (A38) to yield 

(A4S) 

Substituting equations (A44) into equation (A36). F!. , can 
be determined if ?: (n = 0) is known. Because ‘Fr, represents 
the temperature at which branching reaction occurs, it is 
only a function of activation energy and chemical reactivity 
but does not depend on the heat loss. Thus by knowing that 
f; (~7 = 0) = 0 and f- I in the adiabatic limit. we obtain 

and hence 7: (n = 0) = F,,,(.T’ ‘-I). 
Next. by sequentially integrating equations (A28) and 

(A29) twice, and equations (A30). (A31) and (A33) once, 
subject to equation (A44) and the proper boundary con- 
ditions of (A39) (A43), we obtain FrCI = I + ?_, = T,,,. 
(’ = cj . ci = c:. h, = ~ Le, 1;,1/8. as well as 

(A47) 

where z is defined in equation (32). 
Finally, substituting equations (A45) and (A47) into equa- 

tion (A34), and defining the new variables 

the structure equation is obtained, 

(A481 

(A49) 

cj([+ ‘K,) = 0. (A51) 

This is a modified _Bessel function of order zero whose 
solution is Cp = c&(t), where c is the integration constant. 
after squation (A51) is applied. Because K,(t= 0) = 
-In (t/2) - ‘/, where y = 0.5772 is the Euler’s constant, upon 
applying equation (A50) we obtain 

(A52) 

In the adiabatic limit, L = 0 and T- I, we have 

Substituting equation (A53) in equation (A52). we obtain 
the flame response given by equation (36). 


